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SECTION I

INTRODUCTION

The high modulus of advanced polymeric fibers along with its low density makes them an

attractive choice of material in many weight sensitive aerospace structural applications. The

specific stiffness and tensile strength of high performance polymeric fibers like poly (p-
phenylene terephthalamide) or PPTA, commercially sold as Kevlar, and poly (p-phenylene

benzobisthiazole) or PBT, make them much superior to conventional materials like steel and

aluminium. Among the currently available polymers poly (p-phenylene benzobisoxazole) or

PBO and PBT have the best thermal stability and the highest stiffness and strength [1]. These
properties combined with their excellent radiation resistivity and environmental resistance give

them a wide scope of application in aircraft and space structures. However their current
application in reinforced structures like composites is limited by their poor compressive strength.

Unlike metals and alloys which these polymers propose to replace and which have compressive

strengths comparable to or superior to their tensile strengths, polymeric fibers have relatively low

compressive strengths, usually less than 10% of their tensile strengths.

The high specific stiffness and strength of polymeric fibers like PPTA, PBO and PBT are

obtained by using a rigid chain molecular architecture and by ensuring the extension of the

polymer chains either by drawing during the fiber extrusion process or during subsequent heat

treatment. It has been well documented in the literature [2-4] that these fibers have a fibrillar
morphology with a wide range of dimensions for the fibril diameters. Due to their slender

geometry all these structural units will tend to buckle under a compressive load. The different
possible modes of buckling of the fibrillar fiber can be categorized into two depending on
whether the entire fiber buckles as a homogeneous structural unit or whether the fibrils

constituting the fiber buckle in unison.

Numerical results from these models applied at the chain level in the fiber morphology have
been given in reference [5]. The results indicate a fiber compressive strength equal to the shear
modulus of the fiber. These models are re-examined in sections II and III. In section IV the

results of the above models have been viewed at the different levels of the fiber morphology to

see how it affects the overall compressive strength of the fiber. The scope of considering
alternate molecular architectures in order to improve the fiber compressive strengths are also

discussed along with some work done in this area.
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Torsional oscillation of fibers are used in literature [6] to yield their shear modulus which is

related to the shear mode buckling.strength in fibrillar fibers. The axial tension applied to the

fiber during the measurement affects the value of the measured shear modulus. Section V
reviews the mechanics of the torsion of an axially loaded fiber using the incremental deformation
theory and re-interprets the experimental data in terms of the interfibril sliding shear modulus in
such fibers.

Finally section VI presents some preliminary results on the compressive strengths of PBO

and PBT fibers in the as-spun and the heat treated states. The objective of the study is to see if

the increase in the degree of extension and orientation of the fibrils and the consequent decrease
in the degree of the lateral interaction that accompany the drawing process in cold draw and heat
treatment have any affect on the compressive strength of the fibers.

2



SECTION II

BUCKLING MODELS FOR RIGID-ROD POLYMERIC FIBERS

It has been confirmed extensively in the literature that rigid rod polymeric fibers like PPTA

and PBT have a fibrillar microstructure formed during coagulation [2-4]. Buckling of these

fibrillar units resulting from the buckling of the entire fiber has also been observed [2, 3, 7]. The

mathematical models used to determine the theoretical compressive strength of polymeric fibers

due to buckling can be broadly divided into two groups: (1) that which attribute the failure of the

fiber to the collective buckling of the groups of the chains or fibrils that constitute the fiber and

(2) that which considers the compression of the entire fiber as a single structural unit. The

various models, their assumptions and limitations and their comparison with experimental data

are given below.

2.1 SINGLE FIBER BUCKLING MODELS

2.1.1 Euler Buckling

Buckling is an internal instability in slender structures caused by the decrease of their

bending rigidity under the action of a compressive stress. The simplest model for the buckling of

a single homogeneous fiber is that of the Euler buckling of the elastic structure (figure-i). The

critical buckling load for this case is given by

pE = 92EjI m2  (1)
12

Here El is the longitudinal modulus of the fiber, I and I are the length and the cross-sectional

moment of inertia respectively of the fiber and m is the buckling mode, i.e. the number of half

sine waves in the buckled shape. This expression becomes minimum when m=- and so the

critical stress for a cylindrical fiber of diameter d can be written as

= - 2Egd2  (2)
YC 16112(2

2.1.2 Euler Buckling with Shear Effects

In Euler buckling it is assumed that the fiber does not experience any shear deformation.

However due to the relatively low ratio of the shear to the axial modulus of polymeric fibers [8],

the cross-section of the fiber undergoes significant amount of shear during deformation and this

3
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Figure- 1: Column or Euler Buckling



lowers the critical buckling load. The expression for the elastic buckling load with shear for a

slender column can be derived to be (pg. 132 of reference [9])

r = cr (3)l+n-•

G
where G is the shear modulus of the material of the column and n is a geometric factor (equal to
1.11 for a circular cross-section and 1.20 for a rectangular cross-section).

2.1.3 Inelastic Buckling

In the above models the implicit assumption is that the fiber remains perfectly elastic till it
fails. Though initially the fiber may behave in an elastic manner, it is more likely that it becomes
plastic before it fails. Evidence of the kink bands in aramid filaments as being due to plastic
instability has been reported in reference [10]. For a cylindrical column the critical load for the
inelastic buckling can be derived to be (pg. 175 of reference [9])

Ocr = t2ETd2  (4)1612

where I is the moment of inertia of the cross-section of the beam and ET is the tangent modulus in
the plastic region of the stress-strain curve at a stress equal to c;r (figure-2). This equation can

be used to find the critical buckling stress from the stress-strain curve using an iterative method.
For Kevlar-49 fibers, using the compressive stress-strain curve (figure-3) given in reference

[I I], the critical stress for inelastic buckling can be determined to be in the range of 0.36 GPa to
0.44 GPa (52 KSI to 64 KSI). This compares well with the composite test data of 0.45 GPa.
However the validity of equation (4) to predict the compressive strength can only be proved by
applying it to other rigid-rod polymer fibers and by direct morphological evidence of the plastic
nature of the failure. Compressive stress-strain curves for other fibers well into the plastic region

too have to be experimentally determined.

2.1.4 Experimental Comparison

Table-2 compares the above mentioned three Euler buckling models with experimental
results for Kevlar, PBT and PBO fibers with properties given in table-1. Some of the transverse
properties of PBT and PBO have been estimated taking into account their morphological
similarity with Kevlar [5]. The aspect ratios used in table-2 are the ratios of the length of the
fiber used in the recoil test (25.4 mm) to their diameters. It can be seen that for these fibers the
stress needed to buckle them is very low. Since the observed compressive strength is much
higher than the theoretical buckling strength of the fiber it can be inferred that the actual failure

5
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Figure-2: Buckling out of the Elastic Zone
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Table-i: Mechanical Properties of Fibers

Longitudinal Transverse Shear
Fiber Modulus, El Modulus, Et Modulus, G

(GPa) (GPa) (GPa)

PPTA 123 0.77 1.5

PBT 265 0.5* 1.2

PBO 164 0.5* 0.6*

* Estimate

Table-2: Critical Fiber Buckling Stress (MPa)

Euler Euler Mode Inelastic
Fiber I/D Mode with Shear Buckling Experimental

(Eq. 2) (Eq. 3) (Eq. 4) (x 10-3)

PPTA 630 0.19 0.19 0.36-0.44 0.37t (0.45)*

PBT 630 0.41 0.41 0.28t (0.31)*

PBO 250 1.62 1.61 0.27

t Recoil Test Data
* Composite Test Data
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during the testing is not caused by the buckling of the entire fiber. In the composite test it may be

due to the fact that the Euler mode may be adequately removed due to the matrix support.

2.2 FIBRILLAR / CHAIN BUCKLING MODELS

In this description of buckling it is assumed that the fibrils or the rigid-rod chains that
comprise the polymeric fibers buckle in a group. It is also assumed that these slender columns
(fibrils or chains) each with a longitudinal modulus El, length 1, diameter d, and cross-sectional
moment of inertia I interact with one another. The interaction is modelled by assuming that the
columns are supported by an elastic foundation with (transverse) modulus Et and shear modulus

G (figure-4). In reality these two properties quantify the combined transverse stiffness of the
columns and any possible intercolumn interaction (eg. Van der Waal interaction or interfacial

adhesion forces).

A system of parallel fibrils or chains described above can buckle in either of two modes,
extensional mode or shear mode [5], depending on the nature of the deformation of the material
between the microstructures. These modes which are similar to the buckling failure of

unidirectional composites [12,13] have been discussed in detail in reference [5] and are

reproduced here.

2.2.1 Extensional Mode of Buckling

In the extensional mode the adjoining columns buckle out of phase (figure-4a) and the
material in between the columns undergoes extension. The buckling load can be determined by
minimizing the expression for the total potential energy of a column on an elastic support [9] to

be given by
* 702EII m2 + 4Etl2 1 where m = 1,2,3,... (5)

12 R2 m2

To determine the first buckling mode, we have to determine the value of m for which Pe is a
minimum. It can be seen that in the absence of the elastic support, i.e., when Et=O, the above
equation reduces to the case of Euler buckling of each individual column and Pe is minimum for
m=l. But as the non-zero value of Et increases PC will become minimum for progressively
larger values of m. It can be shown mathematically that equation (5) becomes minimum when

and the minimum value is

9
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Figure-4: Buckling of a Collection of Fibrils
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P& 4f i (6)
For a cylindrical column the critical buckling stress thus becomes

(7)

The above expression has also been derived at the chain level for a rigid rod polymer in reference

[5). If Et and k are the transverse modulus and the covalent bond bending constant of the chain

the critical buckling stress has been shown to be given by

cr = 4flT (7a)
A

where 1' and A are the bond length and the effective cross-sectional area of a single chain in the

lattice.

2.2.2 Shear Mode of Buckling

The columns deform in phase in the shear mode of buckling causing the intermediate media
to shear (figure-4b). Using the energy method [5,9] the load needed to buckle in the mth mode

can be derived to be
= 2;2E1I m2 + GA where m = 1,2,3,... (8)S~12

where A-d 2 is the area. This expression becomes minimum for m=1 and so the critical load for

shear mode of buckling of a cylindrical column of diameter d is

cr = -- If+ G (9)

For long columns due to their very high aspect ratio (i/d) the Euler term in the above expression

was considered very small compared to the second term and was neglected [5]. Therefore

es• = O (9a)
This approximation is valid at the chain level because the aspect ratio of the molecular chain is
high. However, for the relatively small aspect ratios at the fibrillar level the Euler term in the
equation for the shear mode buckling stress, equation (5), cannot be neglected. This is illustrated

in figure-5 where the ratio of the compressive strength as given by equation-9 to the shear
modulus is plotted against the aspect ratio of the buckling unit. It can clearly be seen that in the
range of the fibrils, l/d < 100, the approximation of the entire shear mode buckling stress by the
shear modulus is incorrect, especially for small values of the stiffness.

11
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SECTION III

FIBER BUCKLING VS. FIBRILLAR BUCKLING

The different buckling models have been described above. For a transversely isotropic,

homogeneous fiber that remains elastic to failure, it is obvious that equation (1) is the appropriate

equation describing its buckling behavior. If the fiber is composed of fibrils, or closely packed

rigid-rod molecular chains then equations (6) and (8) will describe the buckling loads of the

fibrils or chains. The actual mode in which the fiber fails will then depend on which of the

equations for the above mentioned three buckling loads for the fiber as a whole is a minimum.

3.1 BUCKLING EQUATIONS OF A RIGID-ROD POLYMER FIBER

Let's consider a single isotropic, homogeneous fiber. The Euler buckling load is identical

to that of equation (1). The equation is rewritten here with capital letters to denote the description

of the cylindrical fiber.

PC = 7r3E/D 4  (la)64L2

Let's imagine that this fiber can be split into finer structures (figure-6), e.g. fibrils or molecular

chains, without loss of volume. The buckling load of the bundle of N fibrils will be then

PC = Npc = RD (10)
4d2 Pc

where PC is the critical buckling load of each individual sub-element and d is the diameter of the

sub-elements. If the splitting is perfect G and Et in equations (5) and (8) can be considered as

zero and then Pc will be given by

Pc = ý3E/d 4  (11)
64L

2

and the critical buckling load for the whole bundle is given by equation (la). Next let's imagine

that repair can be made to this bundle with an adhesive, again, without any change in the total
volume. G and E, are then virtually a measure of the effectiveness of the adhesive in repairing

the bundle. If perfect repair can be made such that the resultant fiber possesses mechanical
properties indistinguishable from the original fiber, the buckling load should again be described

by equation (la). Otherwise, the extensional and shear modes described by equations (6) and (8)
respectively are two additional possible buckling modes for the fiber. Thus a complete

description of the buckling of a fiber with a structure as depicted in figure-6 should be the

following set of equations describing the three possible buckling modes.

13



Sd

SD--

(a) Column Buckling (b) Extensional Mode (c) Shear Mode

Figure-6: Buckling Modes of a Fiber with a Microfibrillar Morphology
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P. = X313 D4 (la)

pc = 8 3 D2 (6a)

PC = , =EIX2D 4 +I 2 (8a)
256L2  4 D

This is a simplified description of the possible modes; mixed modes with combinations of shear
and'extensional buckling are ignored. The stresses corresponding to these equations (a€ r
4PdJnD 2) are plotted in figure-7 using the elastic constants for PBT fiber [5]. The fiber will

buckle according to one of the modes depicted in figure-6 depending on which of the equations
(la), (6a) or (8a) yields the lowest critical load value.

3.2 FIBER COMPRESSIVE STRENGTH AND THE BUCKLING MODES

Comparing equations (la) and (6a) it can be shown that if

Et > 7C3 (Dr El (12)64L

the entire fiber will buckle as a column instead of the failure being through the extensional

buckling of the fibril. Similarly if
> 2 ID_2E

G > 5 (13)16 TL

then the shear buckling of the fibril will not take place. Since D/L is usually less than one, it is
obvious that G and Et do not have to be the same order of magnitude as El for the fiber to buckle
as a column. This exercise clearly points out that having a fibrillar structure does not necessarily
.mean that fibril buckling has to be the mode of failure: if the interaction between the fibrils can be
sufficiently strong to satisfy equations (12) and (13), the fiber will buckle as a single element.
Finally equations (6a) and (8a) yield the following third condition on whether extensional or
shear mode of buckling will occur. Thus if

G > 2- Z- • 2 (LYEl (14)2 64
the fiber will fail in the extensional mode.

The relationship between the fibrillar density of the fiber (D/d), the aspect ratio of the fibrils
(L/d) and the different buckling failure modes can be better illustrated by rearranging the above
inequalities in the following non-dimensional form after substituting for X.

L > El [D)(12a)

•.d 4 7kt' ) (13a)

L < X ./ - (14a)
d 8 2k'

15
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Here k=EJEI and k'=G/Et. When these equations are plotted, as in figure-8, they identify three
distinct regions --- regions where the critical buckling load for each of the three respective
buckling modes is a minimum. Thus when equations (12a) and (13a) are satisfied the Euler
buckling of the entire fiber dominates over the microstructural failure, while extensional mode
failure of the fibrils is most dominant when equation (14a) is satisfied. At all other regions on
the graph the shear buckling of the microstructure dominates the fiber failure. The critical aspect
ratio of the fibril that distinguishes between the shear and extensional mode of failure, equation
(14a), is independent of the fibrillar density, Did. Instead it depends only on the relative
magnitudes of Et and G.

Figure-8(a) has been plotted for PBT fiber using the values of the transverse modulus Et
(0.5 GPa) and the sliding shear modulus G (1.2 GPa) given in reference [5]. For a fiber and
fibril combination with a known geometry changing the values of G and Et will also change the
failure mode of fiber as shown in the example in figure-8(b) where Et=0.1 GPa and G=6.0 GPa
is used. Thus for a fiber in which the fibrils are such that L/d=10 to 100 and D/d=100 in the first
case (figure-8(a)) the fiber is predicted to buckle in the shear mode while in the latter case (figure-
8(b)) the failure is predicted to be in the extensional mode. It can also be seen that for larger size
microstructures (small D/d) as the aspect ratio l.d increases the change of the buckling mode in
figure-8(a) is from the extensional mode through shear to the single column mode. In figure-
8(b) on the other hand the failure mode changes directly from the extensional mode to'the column
mode.

The differences between the buckling modes as depicted in figures-6(a) and 6(c) should be
further clarified. Observing the fiber buckles macroscopically, there is no apparent difference
between the two modes. However, the deformation of the volume elements in the fibril are
different. In the single column buckling mode, all volume elements deform in a manner without
shear deformation of the interfaces of the elements (figure-9(a)). On the other hand in the shear
mode of fibrillar buckling, the volume elements in each substructure deform by the shearing of
the interface between them (figure-9(b)). The length of the buckling element, L, is usually
determined by the stationary points of the column under compression loading. In the Euler
buckling of a single, unsupported fiber, L should be considered as the gage length of the fiber
between the experimental fixture. In the consideration of the fibrillar structures in a polymeric
fiber as depicted in reference [2], L should be the fibrillar length between junctions.
Furthermore, the effective L may not be related to any observable morphological features of the
undamaged fiber. If G and Et are not uniform along the length of the fibrils, the effective L can
be the section that has a weaker interaction with the neighbors.

17
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SECTION IV
FIBRILLAR MORPHOLOGY VS. BUCKLING STRENGTH

The fibrillar morphology of rigid-rod polymers has been well documented in literature.
Cohen and Thomas [3] reported the diameter of the smallest fibrillar unit in PBT to be about 80-
100 A. At the other end of the scale 0.20-0.75 pm fibrils have been observed in mechanically
peeled PBT fibers [2]. Study of SEM micrographs of PBT and other polymeric fibers show the
existence of fibrils of varying diameters in the above range (table-3). Similarly the lengths of the
fibrils vary over a wide range depending on the scale of the fibrillar unit being studied. Cohen
and Thomas [3] determined the fibrillar length to be of the order of 102 to 103 A, while the
distance between kink bands in peeled PBT in reference [2] is about 5-20 pM. Since buckling
could be initiated in any of these morphological structures the aspect ratio of the buckling unit
could vary from about 500 at the chain level (assuming PBT chains of 5A diameter and 2400A
length [5]) to a lower number at the fibrilIar level.

From figure-10 it can be seen that the shear mode of failure is the most probable failure
mode for all these different morphological structures having the aspect ratios mentioned above.
The shear modulus used to determine the shear mode buckling in equation (8a) is that which
measures the relative sliding between the fibrils. The longitudinal (or torsional) shear modulus
of the fiber was used instead in references [5] and [6]. Furthermore, in equation (8a) for the
small values of the sliding shear modulus G, as explained earlier in figure-5, the contribution of
the Euler term may not be small enough to be neglected especially at the fibrillar level with aspect
ratios less than 100.

"If the fiber is not a homogeneous isotropic column each sub-fiber element (from the fibril
down to individual molecular chains) will have its own set of buckling equations (la), (6a) and
(8a). Among the various dimensional substructure elements the actual unit where buckling is
initiated will then be the one for which the expression for the buckling load is a minimum. This
means that improving the longitudinal modulus E, by better aligning the rigid-rod chains will not
necessarily improve the compressive strength [1] as predicted by equation (2).

4.1 BUCKLING STRENGTH AND EXPERIMENTAL FIBER PROPERTIES

The material -properties used in all of the above calculations have been determined
experimentally by iesting single filaments. The standard tensile test is used to determine the
longitudinal modulus, El [14]. The transverse modulus of the fiber, Et, is determined by
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Table-3: Dimensional Range of Substructure Elements in a Fiber

Substructure Dimensional Range
of Diameter

Fiber 10-50n

Macrofibril O.5Srm
Fibril

Microfibril' 2nm

Chain A
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Figure-10: Relationship Between Buckling Modes and Microfibrillar
Structure in PBT Fiber (EI=265GPa, E,=0.5GPa, G=1.2GPa)
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compressing it between flat platens and simultaneously recording the platen displacement and the

contact force [15,16]. Finally the oscillations of a torsional pendulum made with the filament

[17, 18] is used to yield the torsional modulus of the fiber. This last measurement is discussed

further in section-V. The test methods described above all determine the bulk properties of the

fiber. These properties are a measure of the material of the fiber along with the defects in its

microstructure and not that of the defect-free molecules or chains. In the forementioned buckling

equations it is therefore more appropriate to use these material properties at the fibrillar level

rather than at the chain level as done in reference [5].

As mentioned earlier the buckling of the fibrils the dominated by the weakest buckling unit,

i.e., among the hierarchy of the fibrillar structure the actual fibrils where failure will initiate will

have the lowest buckling load in one of the three modes -- Euler, shear or extensional.

Measurement of the mechanical properties by testing individual fibers yields the average

properties of the entire fiber, and does nctt reflect the heterogeneous fibrillar structure inside it.

At the level of the individual fibrils the local mechanical properties may be quite different and

lower than the measured values. For example presence of a longitudinal void between

microfibrils will remove the transverse support between them, thus drastically reducing the local

transverse modulus. As explained through figures 8(a) and (b) in section III, the change in the

transverse mechanical properties can change both the buckling mode by which failure is initiated

in the fiber and also the morphological level where it is initiated. In figure-8 the change was

from the shear to the extensional mode. Further studies in this area can be done by

experimentally estimating the lengths of cylindrical voids and typical fibril diameters and

correlating them with the compressive strength of the fiber. However at the present time there is

not enough SAX data regarding the lengths of cylindical voids in rigid-rod polymer fibers to

support the above conclusion [19].

4.2 BUCKLING STRENGTH AND THE MOLECULAR STRUCTURE

Considerable efforts have been directed toward improving the compressive strength of
rigid-rod PBT fibers. They involved the modification of rigid-rod backbones as well as the

incorporation of pendant groups. The modified rigid-rod backbones may contain bulky

terphenyl units (TPBT) to disrupt the molecular packing order [20] or reactive fluorine moieties

(FPBT) to form intermolecular crosslinks [21]. The pendant groups may be labile methyl groups
(MPBT) with crosslinking capability [22] or hydroxyl groups (HPBT) with hydrogen bonding

capability [23]. These fibers were dry-jet/wet spun and then heat treated at elevated

temperatures. Their spin-draw ratio, heat treatment temperature, longitudinal tensile modulus,
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tensile strength and axial compressive strength are presented in Table-4. Within each fiber, the

compressive strength was found to have no relationship with the spin draw ratio, tensile modulus

and tensile strength, suggesting that the compressive strength is not a function of the molecular

architecture. All the modifications in the chemical structure changed the structure within the

fibrils, and not the macroscopic fibril structure which was probably the structure responsible for
the initiation of instability during compression loading.
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Table-4: Mechanical Properties of Substituted PBT Fibers

Substituted Spin Draw Heat Treat. Longitudinal Tensile Compressive
PBT Ratio Temperature Modulus Strength Strength
Fiber (0C) (GPa) (GPa) (MPa)

PBT 10-80 550-600 200-345 2.8-4.1 275-410

TPBT 2-19 500-550 190-275 1.5-2.5 275-410

MPBT 8-51 500 190-300 1.7-3.2 200-345
FPBT 10-20 420-700 165-310 1.1-3.1 310-480

HPBT 20-38 350-435 110-270 0.8-2.5 140-200
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SECTION V

FIBER TORSION TEST

In the previous sections the shear modulus of the material between the fibrils in a fiber has
been found to be a good measure of the fibril shear buckling load. Measurement of the torsional

stiffness of the fiber is done using a torsional pendulum apparatus (figure-11) in which a disk or
bar with a known moment of inertia is suspended from the fiber. Such measurements have been

done in literature for textile fibers [17,18], carbon fibers [24] and for rigid-rod polymer fibers
like Kevlar [6]. Ideally, these tests should be done without applying any tension on the fibers

during the test. However the weight of the inertia body used in the experiment acts on the fiber

and changes the measured torsional stiffness.

The torsional stiffness of a bar is theoretically found to increase with the application of a
longitudinal stress [25,26]. The increase in the stiffness is negligible when the strain resulting

from the applied stress is small [17,18]; however the effect becomes significant for large, finite
strains [6,24]. It has been suggested in reference [6] that the amount of increase in the torsional

stiffness is dependent on the degree of anisotropy of the material. Thus the relationship between
the measured torsional stiffness Gm corresponding to an axial stress az and the zero stress

torsional modulus G has been determined to be

Gm = G+Acrz (15)
where A is a material dependant constant that varies from zero for isotropic materials and one for

highly anisotropic materials. But this theory does not consider the effect of the initial, finite

(extensional) stress on the stress-strain relationship of the material which can sometimes become

significant.

5.1 ANALYSIS OF THE TORSION OF FIBERS UNDER TENSION BY THE

INCREMENTAL DEFORMATION THEORY

The problem of torsion of a fiber under an initial axial stress is better analyzed using the
theory of incremental deformation [26] because of the large deformations involved. According to

this theory the effect of the initial stress is to change the torsional shear modulus of the fiber as

shown in figure-12. A measure of this increased stiffness is the sliding shear modulus defined

by
GO = Grz-2Ioz (16)

2
The sliding shear modulus Grz is equal to the torsional shear modulus Grz of the material only
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Figure-12: Axial Stress and the Sliding Moduilus
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when there is no applied axial stress. This relationship is true for transversely isotropic materials

in which the torsional shear modulus GzfGoz is different from the inplane shear modulus Gro.

For isotropic materials the sliding shear modulus can be shown using this theory to be

approximately the same as the shear modulus in the undeformed material. Thus

Gz = G (16a)

Along with the increase in the torsional stiffness there is also an increase in the length of the

fiber. If E, is the axial modulus of the fiber then the increased length of the fiber is given by

L'= (I+O)L (17)

Using the incremental deformation theory the total torque per unit length acting on the

cross-section of the fiber under the initial stress can similarly be determined to be [26]
% = (Gý +az7 )LJ 0 (18)

L'
where J is the polar moment of inertia of the cross-section of the fiber. Thus for the torsional

pendulum we have the following equation of motion.

M6 +'C = 0 (19)

Here M is the moment of inertia of the pendulum disk. Combining equations (18) and (19) and

solving, the measured torsional stiffness can be written as

Gm = Gz + Oz = 128nML (20)
p2D4

where D is the diameter of the fiber and P is the period of oscillation.t The Poisson effect on the

diameter of the fiber is neglected here because the relative change in the diameter and its fourth

power is very small compared with the change in the length of the fiber. The measured torsional

stiffness (Gm) as given in reference [6] is thus related to that given in equation (20) by
LGGm-- "L m (21)

5.1.1 Comoarison with Experimental Results

The problem of the torsional vibration of an axially loaded fiber of length L is therefore

equivalent to that of an unloaded fiber of length L' and torsional stiffness Grz'+az. This effect

was studied by replotting the experimental data for Nylon and Kevlar 49, both anisotropic fibers,

given in reference [6] taking into account the effect of the change in length due to the axial stress

on the equation for the torsional pendulum. Figures 13(a) and 13(b) show that the torsional

t for the centrally bonded torsion pendulum described in reference [6] the corresponding equation is

GM= 32nML' (20a)
P2 D4
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stiffness Grz'+Oz varies linearly with the axial stress az with a slope of one. The experimental

data for the isotropic glass fiber could not be replotted because the relative change in the period of

oscillation, P, with the axial load was too small to accurately read off the plot in reference [6].

However it is expected that for all homogeneous fibers, including isotropic ones, the measured

torsional stiffness will vary linearly with the axial stress with a slope of unity irrespective of the

degree of its anisotropy. Torsional pendulum tests data for some transversely isotropic,

homogeneous carbon fibers [24] supports this theory.

5.2 INTERPRETATION OF THE SLIDE MODULUS

If the homogeneous body under axial tension is considered to be made up of many strips

parallel to its axis then the slide modulus, defined by equation (16) can be interpreted as the
stiffness related to the stress parallel to the axis needed to slide one strip over the other [26]. As

these strips are made smaller and smaller they can be considered to be structures analogous to the

fibrils in rigid-rod polymer fibers like Kevlar and the slide modulus can be identified as the shear

modulus that restricts the relative sliding between the fibrils -- the quantity G used in equation

(8a).

It can be seen from figure-13 and from equation (18) that when a compressive axial stress

is applied to the fiber its effective torsional stiffness G decreases and it vanishes for the condition

aZ = - Gý (22)

Accordingly the structure becomes unstable for any non-zero applied torque as interpreted in

reference [6] for Kevlar fibers. However this condition of internal instability, identified as

torsional buckling in reference [26], can occur in any transversely isotropic fiber irrespective of
its microstructure as long as equation (22) is satisfied. But only for fibers with a fibrillar

structure can the sliding modulus, G'm, be taken to be a measure of the fibrillar shear mode

buckling strength in the model described in section-il. This is because the compressive failure of

the fibrillar fibers observed experimentally is caused by their internal instability as explained

above.
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SECTION VI
EFFECT OF PROCESSING CONDITIONS ON COMPRESSIVE STRENGTH

As discussed in the earlier sections, experimental and theoretical considerations [2,5] have
shown that the fiber compressive strength most likely depends on the strength of the interaction
between the fibrillar substructures within the fiber, and not on the molecular interaction between
the chains. If this is true then the processing and post processing conditions that affect the
magnitude of the interaction at the fibrillar level will also affect the compressive strength. On the
other hand if only the transverse forces at the chain level is changed during processing then there
should not be a significant change in the compressive strength. In this section some work done
in this regard is discussed.

Several studies were done inhouse [21-24] to try to improve the compressive strength of
PBT fibers by increasing the transverse interaction at the polymer chain level using substitution
groups of varying degrees of polarity and having the capacity to crosslink. Table-4 shows that
the compressive strength is not affected much by changing the substitution groups on the PBT
molecule thus showing that the strength is not influenced by the interchain interaction.

6.1 EFFECT OF IRRADIATION OF THE FIBER

Work has also been done inhouse to determine the effect of degree of chain crosslinking on
the compressive strength through the irradiation of pendant methyl PBT (MPBT). It is expected
that during the irradiation process the radiation energy will break up some of the bonds within the
molecule and induce crosslinking between adjacent polymer chains. Thus the transverse
interaction within the fibrils will be affected. However tie degree of entanglement between the
fibrils, which contributes more to the transverse interaction at the fibrillar level, will not be
affected.

As-spun methyl PBT fibers were irradiated with gamma rays upto a maximum dosage of I
GRad. It was found (table-5) that for these fibers the change in thc Lensile modulus and the
compressive strength with irradiation is not significant. The, effect of radiation on the
crosslinking between the polymer chains has been studied by measuring the change in solubility
of the radiated and the un-radiated MPBT samples in methyl sulphonic acid (MSA) [27]. It can
therefore be concluded that irradiation and hence the increase in transverse interaction at the chain
level through crosslinking does not affect the compressive strength significantly. The fact that
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Table-5: Effect of Irradiation on the Properties of Methyl PBT Fiber

Fiber Tensile Tensile Compressive
Diameter Modulus Strength Strength

(Aim) (GPa) (GPa) (GPa)

As-spun MPBT 80-90 103 1.0-1.4 0.6-0.7

Irradiated MPBT 70-80 124 0.9-1.3 0.7-0.8
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the tensile modulus did not change significantly also indicates that the degree of alignment of the

chains and/or fibrils did not change much during irradiation.

6.2 EFFECT OF COLD DRAW AND HEAT TREATMENT OF THE FIBER

It has been proposed [3] that the fibrillar structure forms in the fiber during coagulation.
As the fiber is rapidly cooled in the coagulant, shrinkage stresses arise in the fiber causing some

of the transverse bands observed in them [2]. The effect of the residual stresses caused by the

difference in the rate of heat conduction between the surface and the core of the fiber and by the
lack of sufficient draw in the fiber during coagulation is that the fibrils in the fiber are not fully

extended. Instead they curl up and overlap with the adjacent fibrils. Experimental evidence of
the lack of order in the transverse direction comes from the fact that the as-spun fibers have lower
longitudinal modulus and high tensile yield which indicates that the microstructure is not all well
aligned and fully extended.

Several studies have been done to determine the effect of the degree of heat treatment on the
tensile properties [2,28] and on the compressive strength [28]. It has been determined that both
cold draw and heat treatment increase the longitudinal modulus and the yield strength of the fiber
from its as-spun state suggesting that the microstructure (chains and fibrils) get more aligned.
SAX studies [3,28] show the increase in transverse molecular order. It has also been shown that
drying the fiber with an applied tension results in an increased degree of alignment in the fiber as
compared to drying without tension and that more significant increase in the tensile properties
occurs with heat treatment than with cold draw [28]. This has been attributed to the unraveling
of the microstructure due to the applied tension and due to the evaporation of the coagulant and

the solvent from the wet fiber during the heating process. Post dryiqg heat treatment temperature
does not have any significant influence on the compressive strength [28] even when the tensile
modulus increases.

In house work was done on Dow PBO and DuPont PBT fibers to further study the above
issue and to see if the significant increase in the tensile modulus in the heat treated fiber over the

as-spun fiber is accompanied by any change in the compressive strength. The results of this
work are discussed below.

Figures 14(a) and 14(b) show typical tensile stress-strain curves for the as-spun and heat

treated polymeric fibers used in this study. It can be seen that for the as-spun fibers there is a
small elastic region followed by a large plastic zone with a distinct yield point while the heat
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treated fibers behave elastically almost upto the point of failure. Thus the maximum strain to

failure is much greater in the as-spun fibers while the corresponding elastic modulus is only

slightly lower lower. Table-6 shows that the difference in tensile modulus between the as-spun

and the heat treated fibers is not much for the PBO and the PBT fibers; this may be because the

heat'treatment conditions may not be completely optimized for the maximum modulus.

Another method of aligning the microstructure of the fibers is to draw it at room

temperature. This is called cold draw (figure-14(c)). As the applied stress becomes greater than

the yield stress of the applied fiber, it undergoes plastic deformation. On unloading the fiber and

reloading it, it is found that the fiber now behaves elastically upto the point of the initial loading

as shown in figure-14(c). The cold draw elastic modulus is also not much different from the as-

spun elastic modulus. This shows that the linear elastic modulus is a property of the fully drawn

microstructure, when the fiber does not suffer permanent deformation. Only when the applied

stress becomes greater than a critical value, equal to the yield stress, the microstructure starts

being extended, thus accounting for the plastic deformation of the fiber.

Table-6 also shows the effect on the recoil compressive strength. It can be seen that the

there is a large drop in the compressive strength of the fiber form the as-spun state to the heat

treated state. It should be mentioned here that the tensile load (corresponding to the compressive

strength) used in the recoil test was less than the yield stress of the unloaded as-spun fiber i.e.,

the fiber was loaded within its elastic region and therefore did not suffer permanent deformation.

In the case of the cold drawn PBO fiber too the recoil compressive stress decreases from the as-

spun value and approaches the heat treated value. The value of the cold draw stress used was

about 1.7 GPa which was greater than the yield stress of 0.5 GPa for the as-spun PBO fiber.

Thus corresponding to an increase in the lateral order of the microstructure of the fiber either due

to heat treatment or due to cold draw there is a decrease in the compressive strength. The above

observations support the earlier statement that when the fibrils are all better aligned along the

fiber axis there is less transverse interaction (figure-15) and this appears to lower the

compressive strength of the fiber.

More tests with better quality fibers have to be done before any final conclusion can be

made. The as-spun PBO and PBT fibers used in this experiment had kink bands present in them;

some of which disappeared under tension. However they could have affected the compressive
strength values by acting as precursors for the kink bands observed during the recoil test and

may-be the reason for some of the scatter observed in the compressive strength data, especially

for the PBT fibers.
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Table-6: Effect of Heat Treatment on Mechanical Properties

------ ------------------------

Fiber Tensile Tensile Compressive
Fiber Type Diameter Modulus Strength Strength

(Im) (GPa) (GPa) (GPa)

As-spun 50-55 147 2.0-2.6 0.43

PBO Cold Drawn 50-55 0.28

Heat Treated 50-55 164 1.0-1.5 0.27

PBT As-Spun 20 171 1.6-1.7 0.5-0.7

Heat Treated 17-19 256 2.0-2.5 0.28
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(a) As-Spun Fiber (b) Heat Treated Fiber

Figure-15: Alignment of Fibrils in Fiber
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SECTION VII

CONCLUSIONS

Various mechanical models describing the buckling of a single column and a bundle of

columns are reviewed and the relationship between these models and the buckling of a polymeric

fiber with substructures (fibril, microfibril and individual chain) are discussed. Numerical

results indicate that the structural element that has the lowest critical buckling strength will initiate

the compressive failure of the fiber. The failure mode and the critical strength when buckling

initiates in the fiber may not always correspond to the shear mode of buckling instead it is

dependent on the element geometry, and the strength of the interaction with the neighbors. In
previous analysis in the literature, the equations were applied to the molecular chain level. This
study shows that the analysis is more appropriate at the fibril level (diameter of 0.1 pin).

Results from the studies of rigid-rod polymer fibers with modified molecular structures are

discussed. Though substitution groups with varying degrees of polarity were used there was no

significant difference in the compressive strengths of the fibers indicating that the interactions

between the polymer chains within the fibrils do not affect the mechanism of compressive

strength. This supports the idea mentioned in this report that it is more relevant to apply the
buckling equations at the level of the fibrils rather than at the chain level.

The mechanics of the fiber torsion test has been re-assessed from the point of view of the

incremental deformation theory which, unlike the linear elastic theory, considers the effect of the

axial stress on the stress-strain relationship of the anisotropic fiber. According to this theory the

torsional modulus measured in the fiber torsion experiment must be linearly related to the axial

stress for all homogeneous materials unlike as reported in earlier work. Experimental results
from this earlier work has been shown to be in support of this conclusion. The incremental

deformation theory has also been used to explain how the measured torsional stiffness is actually
a measure of the shear modulus that describes the sliding between the microstructure in a fiber
with a fibrillar structure. The condition of torsional instability when the measured torsional

stiffness of the fiber vanishes occurs when the applied axial compressive load is equal to the
sliding shear modulus of the microstructure in the fiber. According to the buckling equations

described in section 111 this corresponds to the compressive strength of a fiber in which the
failure initiates by the shear mode buckling of the microstrcture.

- Finally the results of some preliminary cold draw experiments on as-spun and heat treated
fibers have been reported. Some results seem to indicate a drastic descrease in the compressive
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strength of the fiber, upto 50%, with cold drawing and heat treatment. If this is true this may be

identified with the decrease in the lateral interactions between the fibrils that accompanies the

axial ordering of the microstructure in the fiber during the drawing and the heat treating processes

as suggested by the buckling theories discussed in this report. However more work needs to be
done before any definite conclusions can be drawn.
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APPENDIX

LITERATURE REVIEW OF MORPHOLOGY OF PBT

AS RELATED TO ITS COMPRESSIVE STRENGTH

Observations Reference

1. Core-sheath structure of the fiber Kumar[29]

2. Fibrillar structure of the fiber Allen[2], Minter[30,31],

Cohen[3, 32-34], Satish[29]

3. Fibrillar dimensions and structure:

"* Width - 70A; Ribbon shaped fibril Allen[2]

"* Diameter - 80-100A; Cylindrical fibril Cohen[32]

"* Average diameter by SAX - 71A; Irregular Cohen[33]

shaped cross-section
"* Length of microfibril - 100s to 1000s A Cohen[3]

4. Local ordered region in the fiber (within the fibril):

"* In as-spun fibers - 20A, 20 chains Allen[2]
"• In heat treated fibers - 120A, 200 chains Allen[2]

"* As-spun fiber - 20A; heat treated fiber - iooA Minter[30,31]

"* Length parallel to the fiber axis - 150A Minter[31]

(Maximum length observed - 400A)

5. Voids in and between the fibrils:

* Voids within the fiber (PBT/MSA has more voids Allen[2]

than PBT/PPA)

• Density of microfibrils < Density of PBT crystal Cohen[32]

6. Formation of microfibrils:

* The microfibrils are formed and the dimensions set Cohen[3]

during the coagulation process and are not affected

by heat treatment.

• Microfibrils formed by the high nucleation density Cohen[34]

during rapid coagulation in water. Low nucleation

density caused by slow coagulation by moisture

results in a lamellar morphology.

7. Buckling of fiber/fibrils:

* Evidence that buckling of fiber implies the buckling Cohen[3]

of the fibrils / microfibrils.
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* In as-spun PBT fiber, residual compressive stress in Allen[2]

the outer surface of the fiber causes this region to buckle.

SStrain hardening behavior in as-spun PBT is caused by Allen[2]

the straightening of the buckled elements due to relief of

the residual stresses.

8. Effect of heat treatment:
* The lateral molecular order and the degree of axial Allen[2]

orientation increases with the heat treatment temperature.
- Annealing under slight tension increases the degree Minter[30]

of lateral molecular order, but keeps the molecular

orientation along the axis constant (evidence from

WAXD, SAED).

* Applying tension during drying increases the tensile Pottick[35]

properties by straightening the microfibrillar network

and decreasing the magnitude of the axial compressive

shrinkage stress. WAX data shows that tensioning

the fiber in the wet state is better than tensioning in the

dry (as-spun) state.
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